

CO IR Status

Mike Church FNAL 3/30/2004

Scope

- Convert Tevatron CO to a "normal straight" section
 - > Enables staged installation of BTeV detector components
- Install a new low-β Interaction Region at CO in the Tevatron for the BTeV experiment
 - $\geqslant \beta^* = 35$ cm
 - > Consistent with continuing operation of CDF and DO
 - For example, alternating CDF/DO stores and BTeV stores
 - > Makes use of full luminosity available from the Tevatron at the time of installation
 - All devices "keep clear" of the CO Collision Hall
 - > Tevatron beamline will be completely changed between B43 and C17 (~445m); minor changes elsewhere in the Tevatron
 - > Installation in the B4, C1, and CO service buildings
 - Major new components are spools (correction magnets) and low beta quads
 - Also includes new PSs, ES separators, cryogenic devices, instrumentation and controls mods, software mods

Organization

WBS Structure

- 2.1 New Magnets
- 2.2 2005 Shutdown (convert CO to "normal" straight section)
- 2.3 New Power Supplies
- 2.4 Cryogenic Systems
- 2.5 Controls
- 2.6 Instrumentation
- 2.7 Electrostatic Separators
- 2.8 2008 Shutdown
- 2.9 2006 Shutdown (currently no work planned)
- 2.10 2007 Shutdown
- 2.11 2009 Shutdown (install CO IR)
- 2.12 Hardware commissioning
- 2.13 Overall project management (includes accelerator physics calculations)

Documentation

- "Advanced" Conceptual Design Report
- Open Plan WBS
- Chapter in BTeV CDR
- Project Management Plan
- Personnel Expertise document
- Hazard Analysis
- Risk Assessment
- Requirements document
- Response to February CO IR Temple Review
- 2 Plenary talks (Church, Kerby)
- 7 breakout talks (accelerator physics, corrector magnets, spool design, quad design, HTS leads, overall cost/schedule, magnet cost/schedule)

Status of Calculations

- Lattice design has been stable since 2/01
- Initial tracking and dynamic aperture calculations have been done
 - > Dynamic aperture is good; beam-beam tune spread is small
 - > These calculations will continue
- Beam halo calculations have been completed
 - > Halo mitigation with present Tevatron collimator system, B48 collimator, and shield wall appears to be adequate
- Investigation of other helix solutions
 - > May depend on what is learned in Run II
- See J Johnstone breakout talk for more details

Technical Components

Power Supplies

- > 3 10 kA supplies for LHC-style low beta quads
 - Based on recent MI design
- > 4 5kA supplies for reused Tevatron low beta quads
 - Based on recent MI design
- > Electrostatic separator power supplies (3 new, 1 reused)
 - Original Tevatron design
- > 50 A supplies for corrector magnets
 - Based on recent MI design

Cryogenic devices

- > 10 new cryogenic spools (warm bypasses, spacers, feedcans)
 - Lengths vary from .15m to 9m
- \triangleright Modification to He and N_2 headers in tunnel

Technical Components (continued)

- 6 Electrostatic separators (4 new, 2 reused)
 - > Standard Tevatron design, but may make use of any upgrades developed for Run II
- Controls and Instrumentation
 - > QPM system for new low beta quads
 - > BPMs
 - > New synchrotron light monitor
 - Minor changes to large suite of operational, control, and instrumentation software
- Infrastructure
 - > LCW (Low Conductivity Water) for Collision and Assembly Halls
 - > Extensive new buswork for low beta quads

Current Status

- Project team in place and functional
- Lattice design stable
- Additional calculations in progress
- "Advanced" Conceptual Design Report to evolve into Technical Design Report
- Cost and schedule estimates being refined (see Church and Chichili breakout talks)
- Design work on spools and low beta quads (see J Kerby talk)
- Contacting vendors for corrector magnet fabrication (see J Kerby talk)